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Abstract 
 

Assembling spatial units into meaningful clusters is a challenging task, as it must cope 

with a consequential computational complexity while controlling for the modifiable 

areal unit problem (MAUP), spatial autocorrelation and attribute multicollinearity. 

Nevertheless, we sustain that these effects can reveal significant interactions among 

diverse spatial phenomena, such as segregation and economic specialization, but most 

methods treat this apparent disorder as noise. 

In order to address this issue, we have developed a hierarchical regionalization 

algorithm that is sensitive to scalar variations of multivariate spatial correlations, 

recalculating PCA scores at all aggregation steps in order to account for differences in 

the span of autocorrelation effects for diverse variables. In such a way, we intend to 

provide a method that minimizes the information loss associated with both MAUP 

zoning and scale effects, while providing results that allow studying the self-

organization of spatial patterns avoiding arbitrary zoning decisions. This algorithm 

produces a hierarchical cartography, which has multiple applications, where two 

particular cases were studied in Santiago de Chile.  

With these settings, the scalar evolution of several social distress measures is compared 

between empirical and 120 random datasets. Remarkably, adjusting several indicators 

with real and simulated data allows for a clear definition of a stopping rule for spatial 

hierarchical clustering. Indeed, increasing correlations with scale in random datasets are 

spurious MAUP effects, so they can be discounted from real data results in order to 

identify an optimal clustering level, as defined by the maximum of authentic spatial 

self-organization. This allows to single out the most socially distressed areas in Greater 

Santiago, thus providing relevant socio-spatial insights from their cartographic and 

statistical analysis, which agrees to independent diagnostics 

On the other hand, despite the abundance of works in hedonic mass appraisal, the 

potential of implementing hierarchical structures to market segmentation has not been 

fully explored. The purpose of this research is to fill this gap in the literature by 

studying the impact of incorporating complex architectures to predictive models, such 

as: econometrics models, artificial neural networks and hybrid models of combined 

forecasts. Our results confirm that all models exceed their predictive capability when 

applied in a hierarchical framework  

In sum, a useful methodology is developed to systematically explore the black box of 

spatial interdependence and multiscalar self-organizing phenomena, while linking these 

questions to relevant real world issues.  
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1. Introduction 
 

In the past 30 years the advance of geographic information systems (GIS) has enabled the 

capture, storage and processing of large volumes of spatial data, as never seen before in 

human history and science. These advances have allowed us to develop models to better 

understand the dynamics that exist in our geographic space and we could not see in detail 

because of technological and methodological limitations. The development of spatial 

analysis methods in recent years has facilitated the creation of several specialized 

magazines and research centers, graduate programs and even funding sources. The study of 

the properties of geographical space is a fertile line of research that directly impacts on 

urban planning and productive development. 

1.1. Spatial self-organization 
A natural laboratory for the study of these complex phenomena is the city, where several 

processes show emergence behavior with no apparent central planning. Segregation 

processes offer a good example of these issues, evolving with self-sustaining dynamics that 

involve correlated attributes which are locally reinforced (Schelling 1969, Massey & 

Denton, 1988; Fujita & Thisse, 2013). The interaction between these processes and the 

geographic space produces dancing landscapes (Miller, 1991), which makes it more 

difficult to predict. Therefore, there are great opportunities in the development of data 

based predictive tools for understanding self-organized processes within the city. 

The case of Greater Santiago (GS) provides a conspicuous illustration of the historical 

production of cumulative socio-spatial inequalities at a metropolitan scale (De Mattos, 

2002; Hidalgo, 2007).  It is clear that income inequality can be traced to unequal access to 

resources, especially land and education, and also shows an unequal provision of 

infrastructure and facilities, such as health care and welfare state arrangements. When 

inequality is analyzed by administrative division, some weak patterns emerge, as can be 

seen in Figure 1. There are districts around the center of Santiago that have high levels of 

inequality like the municipalities of Santiago, Providencia and Ñuñoa. In contrast, the 

northeast sector of the capital has the lowest levels of inequality in general. Segregation 

measures are strongly affected by the scale of data aggregation, potentially leading to 

severe biases when comparing regions of different sizes (Krupka, 2007). Aggregating data 

in administrative units hides relevant information regarding high/low inequality clusters, 

and other phenomena that occurs at different scales. The appropriate definition of spatial 

boundaries is a major challenge in geographic analysis (Gehlke & Biehl, 1939; Openshaw 

& Taylor, 1979; Guo, 2008; Duque et al, 2012), so complex systems like this should be 

analyzed from its most basic unit.  

Besides its computational complexity, this task must consider a combination of three 

interdependent spatial effects that are unaccounted for in standard statistical methods. 

These are the ‘Modifiable Areal Unit Problem’ (MAUP), spatial autocorrelation and local 
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coproduction of different attributes, which leads to multicollinearity (Lefebvre, 1974; 

Openshaw & Taylor, 1979, Anselin, 1995). Rather than considering these topological 

effects as error sources, we sustain that they provide relevant information about how spatial 

patterns self-organize from apparently disorganized social phenomena.  

 

 

Figure 1: Spatial distribution for Gini index by districts (Source CASEN 2011) 
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1.2. Objectives 
Regionalization, understood as a method for partitioning space in homogeneous and 

geographically continuous zones, is a convenient strategy to address the aforementioned 

issues. Remarkably, just before providing a rigorous analysis of MAUP (Openshaw & 

Taylor, 1979), Openshaw (1977) developed a spatially constrained hierarchical algorithm, 

explicitly stating the relationship between aggregation biases and optimal-zone design. As 

can be seen in Table 1, most of prior and subsequent research on spatial clustering has been 

focused on the development and improvement of a wide variety of algorithms, including 

contiguous regions restrictions and multiple attributes, but none offers a proper dealing of 

the MAUP scale effect (Berry, 1961; Lankford, 1969; Monmonier, 1973; Perruchet, 1983; 

Openshaw & Rao, 1995; Duque et al, 2007; Guo, 2008; Mu & Wang, 2008). Works like 

Clark et al. (2015) propose strategies to deal with grouping biases in conventional 

clustering, so we aim to extend that logic to regionalization algorithms. 

  

Table 1: Summary Table 

 

Authors 

Spatial 

information 

Conjoint 

regions 

Multiple 

Attributes 

Scale 

adjustment 

Openshaw, 1977 Yes No No No 

Perruchet, 1983 Yes No No No 

Openshaw & Rao, 1995 Yes No Yes No 

Webster & Burrough, 1972 Yes No Yes No 

Mu & Wang, 2008 Yes Yes Yes No 

Clark et al, 2015 Yes No Yes Yes 

Duque et al, 2007 Yes Yes Yes No 

Guo, 2008 Yes Yes Yes No 

Spielman & Folch, 2015 Yes Yes Yes No 

Source: Author 

 

In order to address these questions, we have developed a hierarchical regionalization 

algorithm designed for parallel bottom-up clustering from local minima, in iterative steps 

that construct successive scale levels. In such a way, we intend to provide a method able to 

minimize the information loss associated with both MAUP zoning and scale effects, while 

providing results that allow studying the self-organization of spatial patterns avoiding 

arbitrary zoning decisions. Our aim is to capture autocorrelation effects inside of self-

produced units, which would minimize the internal variance of multiple attributes while 

simultaneously maximizing the variance among units. In this way, the information of 

spatial patterns would be preserved, instead of treating this apparent disorder like noise. 

Therefore, this work has several specific objectives. First, we seek to overcome the 

aforementioned spatial effects by a regionalization method, second and third, to apply this 

algorithm to analyzing 2 different case-studies in Greater Santiago, hedonic prices 
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estimation and social distress diagnosis. Both applications are sustained on the hypothesis 

that the selected variables are spatially coproduced, yet with varying strengths and 

combinations that are scale-dependent. Therefore, a fourth specific objective is to highlight 

the relevance of MAUP and spatial self-organization for a better understanding of 

regionalization methods.  

This thesis is organized as follows: a review on regionalization methods; case study: 

identifying the best level of analysis for social distress; case study: hierarchical systems for 

hedonic appraisal; and a discussion on the main findings and research perspectives.  
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2. Regionalization methods 
 

Regionalization is as a process of space partitioning in homogeneous and geographically 

continuous zones, through the optimization of an objective function under constraints, 

while guaranteeing that each elementary entity is unambiguously assigned to one zone 

(Openshaw & Rao, 1995; Guo & Wang, 2011). Besides being appropriate to address 

MAUP, these methods are useful for optimal zonal design, improving spatial data 

aggregation for anonymity, for the statistical significance of the collected information, for 

spatial data mining or for an adequate cartographical representation (Openshaw, 1977; 

Pilevar & Sukumar, 2005; Duque et al, 2007). 

2.1. The Modifiable Area Unit Problem 
Geographic space is a dynamic matrix which can reinforce natural or social phenomena 

which take place in it and their interactions (Lefebvre, 1974). Thus, general assumptions of 

statistical independence do not hold in geographic analysis, mainly due to spatial 

autocorrelation and local multicollinearity. Auto-correlated variables can be self-organized 

into systematic patterns, as local attributes influence the reproduction of the same 

phenomenon in neighboring areas (Goodchild, 1986; Getis & Ord, 1992; Anselin, 1995). 

For example, the arrival of high income residents usually contributes to an escalation of 

real estate prices in a neighborhood, increasing the odds for low income residents to leave 

(Smith, 2002). Local multicollinearity arises when different attributes are coproduced or are 

mutually interdependent. For example, unemployment tends to reduce income and can be 

related to higher crime rates, which may stigmatize neighborhoods, restricting job access 

and thus generating a vicious circle (Galster, 2012). In sum, spatial attributes can be 

influenced by themselves and by correlated variables, biasing statistical analysis and 

generating spurious regression coefficients (Lauridsen & Mur, 2006; Mur et al., 2010, 

Openshaw & Taylor 1979). 

Geographers have been aware of these issues at least since Gehlke & Biehl (1939) observed 

that grouping had major effects over correlation coefficients using US census information, 

which were consistent with those observed in random data. These kind of effects were 

systematically analyzed by Openshaw & Taylor (1979), who coined the term ‘Modifiable 

Areal Unit Problem’ (MAUP). In fact, “when data are gathered according to different 

boundary definitions, different data sets are generated. Analyzing these data sets will likely 

provide inconsistent results” (Wong, 2004:571). This problem arises either if different 

entities are modified while maintaining a similar size - the zoning effect - or if smaller units 

are aggregated into larger units - the scale effect -. Both aspects of MAUP are intertwined 

with spatial autocorrelation and local multicollinearity. Indeed, an auto-correlated variable 

may present high average values in a small unit that contains a local concentration, while 

being diluted in a larger area, leading to a scale effect. Besides, two overlapping units of the 

same scale, one fully encompassing a local concentration and the other containing just a 

portion of it, would have different densities of the same variable, a zoning effect. Both 

observations also hold for a set of correlated variables, thus producing multivariate MAUP 
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effects through local multicollinearity. In sum, a theoretical connection exists between 

spatial interactions and the statistical inconsistencies produced by MAUP.  

Firstly, spatial phenomena usually show continuous geographic variations, but the 

information used to measure them is often gathered or aggregated in arbitrary boundaries. 

On the one hand, important biases can be thus introduced in spatial analysis. On the other 

hand, spatial data aggregation can be an unavoidable procedure in order to ensure 

anonymity or statistical significance of collected data. In any case, determining the shape 

and scale of a geographic entity is a difficult problem, for which there might be different 

optimal solutions, depending on the variables which are considered.  

Secondly, the spatial distribution of a variable can be self-organized in systematic patterns, 

produced by the effect of local attributes over the same variables in neighboring areas. For 

example, the arrival of high income residents usually contributes to an increase in real 

estate prices in a neighborhood, increasing the odds for low income residents to leave and 

to be replaced by higher income households (Smith, 2002). This well-known effect of 

spatial autocorrelation is observed in many geographic phenomena and violates the 

assumption of independence among values of different observations, which is necessary for 

standard statistical analysis (Getis & Ord, 1992; Anselin, 1995; Amaral & Anselin, 2013).  

Spatial autocorrelation, either positive or negative, is intertwined with the MAUP. As the 

influence of an attribute over its own spatial distribution varies with distance, the effect of 

local concentration could increase the mean value of this variable in a small unit, while 

being diluted in a larger area, leading to a MAUP scale effect. Besides, two overlapping 

units of the same scale, one fully encompassing a local concentration and the other 

containing just a half of it, would have different distributions of the same variable, a MAUP 

zoning effect. Thus, a direct theoretical connection can be established between 

autocorrelation effects and the statistical inconsistencies produced by the MAUP.  

Thirdly, attributes in space can be mutually interdependent or coproduced. For example, 

unemployment tends to reduce income and can be related with higher crime rates, which 

may lead to stigmatization of certain neighborhoods, preventing its residents to get new 

jobs (Galster, 2012). Thus, spatial attributes can be influenced by their own distribution and 

by those of correlated variables. Owing to these biases, regression coefficients would be 

spurious results generated by spatial multicollinearity (Lauridsen & Mur, 2006; Mur et al., 

2010). Hence, MAUP biases may affect the measurement of a whole set of attributes.   

This brief account of three major issues in spatial statistics highlights the relevance of 

developing adequate methods for zonal systems design, in order to reliably determine 

homogeneous zones at multiple scales (Duque et al, 2007; Guo & Wang, 2011, Mu & 

Wang, 2008). Particularly, the measurement of segregation and related urban phenomena is 

very sensitive to the spatial definition of statistical aggregates, as socially uniform areas 

may be well represented by entities such as census tracts in some cases while being 

inadequately mingled in others (Krupka, 2007). Thus, the definition of homogeneous areas 

can be useful to produce more accurate estimates of diverse spatial indicators (Spielman & 

Folch, 2015), while revealing patterns of spatial autocorrelation and local multicollinearity. 
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Reciprocally, the analysis of self-organizing spatial phenomena is fundamental to 

understand the behavior of regionalization algorithms, which are conceptually related to the 

well-known Ward’s (1963) hierarchical clustering method, but adding the additional 

restriction of producing geographically continuous clusters at all scales. 

In the next section, we will discuss several lines of research that have considerably 

advanced in this topic.  

2.2. Literature review 
Regionalization is a particular case of spatial clustering, which stems from general data 

clustering methods. The partitioning logic is essentially the lenses with which we perceive 

reality, which varies among different complex systems. This starts with philosophy over 

Plato’s cave and Kant, and goes from probability theory (Kolmogorov’s generating 

partition), or number theory (combinatorics), to dynamical systems, psychology and 

neuroscience, biology, social networks, artificial intelligence and many others. 

Several statistical approaches have been adapted to spatial clustering, without satisfying 

regionalization constraints. Two-step procedures generate homogeneous groups through 

statistical clustering and then assemble the contiguous units from the same types, usually 

producing fragmented aggregates (Fischer, 1980; Openshaw, 1973). Standard clustering 

algorithms have been applied to spatial entities, combining their geographic coordinates 

with other attributes, thus increasing the heterogeneity of the clusters or tending to produce 

circular regions (Murray & Shyhy, 2000; Webster & Burrough, 1972). Henriques et al 

(2012) propose an interesting variation of these approaches using Kohoonen neural maps, 

and subsequent treatment of their output space can improve the results (Feng et al, 2014). 

Density-based and grid-based algorithms aggregate points or areas which are contained 

under a suitable density threshold (Hartigan, 1975; Pilevar & Sukumar, 2005; Sander et al, 

1998). These methods are able to detect arbitrarily shaped clusters, but they are very 

sensitive to the selected threshold (Kriegel et al, 2011) and a proportion of the observations 

may be classified as outliers.  

Recent works have developed an interesting approach to spatial clustering, considering 

multiscalar context measures around singular locations. Spielman & Logan (2013) use 

individual data of a nineteenth century census to elaborate profiles describing ethnical and 

socioeconomic variations with distance, around each person. Then, each location is 

assigned a probability of belonging to six classes through a model-based clustering 

procedure, allowing defining neighborhoods’ cores and edges. Clark et al (2015) provide a 

detailed description of Los Angeles’ changing segregation patterns, measuring racial 

composition in increasing scale aggregates around individual locations, performing factor 

analysis of these multiple measurements and clustering blocks in 20 categories, depending 

on homogeneity and ethnicity. These approaches provide rich substantial descriptions of 

urban phenomena, but their capacity to identify geographical patterns depends heavily on 

the spatial autocorrelation of the variables under study, and they do not guarantee the 

definition of a consistent geographical partition.  
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Regionalization algorithms differ from the aforementioned methods by their capacity to 

produce a complete spatial partitioning with geographically continuous clusters. This goal 

is attained through neighborhood constraints over the aggregation process (Openshaw, 

1977). Considering strictly contiguous entities, rook neighbors are the ones that share one 

edge and queen neighbors include the former plus pairs that only share one point of their 

perimeters (Perruchet, 1983; Mu & Wang, 2008). More flexible neighbor definitions can be 

implemented through distance thresholds (Perruchet, 1983; Sander et al, 1998). Two main 

neighborhood-constrained approaches have been developed: partitioning and hierarchical 

regionalization (Berkhin, 2006; Guo, 2003). 

Partitioning regionalization algorithms extend methods akin to k-means clustering 

(Hartigan & Wong, 1979), aiming to divide a data set into a predefined number of groups, 

while optimizing an objective function (Openshaw & Rao, 1995; Duque et al, 2012). Initial 

feasible solutions can be elaborated through random zoning or from a set of seeds, to which 

neighboring areas are reallocated or added until a predefined criterion is satisfied (Nagel, 

1965; Openshaw, 1977). As checking all possible aggregate combinations is 

computationally infeasible in large datasets, these methods rely on exact optimization 

approaches or on a variety of heuristics - such as local search, simulated annealing and tabu 

search - in order to find an optimal solution (Duque et al, 2007; Guo & Wang, 2011).  

A great diversity of algorithms
1
 have been proposed for partitioning regionalization, 

progressively improving accuracy and computational efficiency (Duque, 2004; Nagel, 

1965; Openshaw, 1977; Openshaw & Rao, 1995; Vickrey, 1961). Duque et al (2012) have 

proposed an interesting alternative to the arbitrary definition of a number of clusters, 

substituting this parameter with a population threshold, thus circumventing the optimal 

scale definition problem rather than resolving this issue. An extension of this approach has 

also proven to be a useful procedure to aggregate regions in order to improve the accuracy 

of survey data estimates (Spielman & Folch, 2015). However, as partitioning methods rely 

on arbitrarily predefined numbers of regions or population thresholds, this approach does 

not allow to efficiently address the question of determining an optimal scale or number of 

clusters
2
. 

Hierarchical regionalization algorithms generate a nested chain of spatially contiguous 

clusters - which can be represented as a tree or a dendrogram -, while optimizing an 

objective global function akin to Ward’s (1963) method, or following local optimization 

criteria based on different measures of similarity (Carvalho, 2009; Lankford, 1969). These 

methods can either adopt a bottom-up strategy, aggregating units towards an all-

encompassing region, or a top down approach, subdividing one area into smaller subsets 

(Monmonier, 1973). Bottom-up aggregation is most commonly used, joining the two 

contiguous units that either minimize the total heterogeneity increase, other objective 

functions (Openshaw, 1973), or which are the most similar neighbors (Lankford, 1969).  

                                                           
1 Duque et al (2007) provide an exhaustive review of partitioning regionalization methods. 
2 Theoretically, this could be done through repeated partitioning tests at every aggregation level, but the 
computational cost would be enormous with large datasets, compared to the nested multiscalar structure that can 
be produced by a single run of hierarchical algorithms. 
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Several local similarity criteria have been described (Carvalho, 2009; Guo, 2008). Single 

linkage joins the clusters that contain the most similar pair of basic units, tending to 

produce heterogeneous groups which are linked by a series of close pairs. Complete linkage 

is focused on the most different units between two clusters, generating aggregates where all 

observations are similar to each other, while being strongly affected by outliers. Average 

linkage considers the average dissimilarity of all cross-cluster pairs of units, being less 

biased by outliers and having better performance than single and complete linkage 

(Carvalho, 2009). 

We have focused on hierarchical regionalization, because it produces nested solutions at 

different scales. However, this approach has two important drawbacks (Berkhin, 2006). 

First, there are no clear rules to determine an optimal number of clusters, which is precisely 

the problem we aim to resolve from a scalar perspective. Second, solutions at higher scales 

are dependent on the mergers which have been performed in previous steps, which can lead 

to suboptimal configurations. Mu & Wang (2008) have developed a regionalization 

algorithm that can attenuate this problem, as it works by parallel aggregation from a set of 

local seeds defined by a local minima criterion. When all of the units have been assigned to 

a cluster they are merged in order to form a new layer, iterating this process until it 

converges in one unit. In such a way, dependence on prior decisions is limited to the 

lineage of each cluster and is independent from distant local aggregates. Moreover, Mu & 

Wang introduce a variant of average linkage, using factor analysis to synthetize multiple 

attributes in score that defines dissimilarity among units. This procedure and other PCA-

based variants are particularly useful to calculate dissimilarities with spatially correlated 

variables, because they are designed to control for multicollinearity (Abdi & Williams, 

2010; Spielman & Folch, 2015; White et al, 1991).  

Hybrid hierarchical and partitioning regionalization algorithms follow a connect-and-divide 

strategy, generating a contiguity-constrained hierarchical clustering graph and then 

performing a top-down partitioning of this structure (Guo, 2008; Guo & Wang, 2011). The 

hierarchical step allows to efficiently integrate a contiguity constraint, reducing the 

computational complexity of the following procedures. Then the partitioning process 

optimizes an objective function, such as total sum of squared differences, and can introduce 

additional constraints, such as a minimum population. This combination improves the 

efficiency and accuracy of the regionalization process (Guo & Wang, 2011), but it does not 

resolve the question of determining an optimal number of clusters.  

In sum, considerable progress has been made on improving regionalization methods, 

particularly for optimizing space partitioning into a given number of regions or regions of a 

given size, addressing the MAUP zoning problem. However, the question of determining 

the best scale of analysis remains unsolved, so there is no clear strategy to cope with the 

MAUP scale effect. This is a general problem of all clustering methods, statistical and 

spatial, and we suggest a neat solution for the latter cases. Relevant non-spatial approaches 

to this question will be discussed in the next section. 
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2.3. Geographic self-organized maps, graphs and scale-space 

clustering algorithms. 
Spatial clustering in homogeneous regions is a challenging task in geographic data analysis, 

due to the issues discussed above and to the difficulty of combining two different kinds of 

proximities: geographic coordinates of geographic space and other variables in an attribute 

space (Henriques et al, 2012). Three kinds of methods have been proposed to address this 

question (Duque et al, 2012).  

Firstly, two-stage approaches identify attribute clusters and then aggregate the 

geographically contiguous areas which belong to the same clusters. This method is heavily 

dependent on the attributes’ spatial patterns and does not ensure the spatial contiguity of the 

resulting regions (Openshaw & Rao, 1995). Secondly, several methods consider the 

coordinates of the centroids of the units along with other attributes. In this case the spatial 

contiguity depends on the weight of the spatial information, if it is too low it can produce 

discontinuities, if it is too high heterogeneous circular regions may result (Perruchet, 1983). 

Thirdly, several algorithms perform spatially constrained homogeneous clustering, by 

limiting the possible unions to units that have specific neighborhood relationships, most 

frequently shared borders (Lankford, 1969; Mu & Wang, 2008; Duque et al, 2012).  

An extensive discussion of the variants within this last type goes beyond the scope of this 

article, but we consider this kind of strategy to be the most adequate to our objectives, 

mainly because it ensures spatial contiguity among the resulting clusters. Instead, we will 

discuss three recent approaches which are particularly interesting.  

The Geographic Self-Organizing Maps (Geo-SOM) incorporate spatial constraints to the 

Kohonen (1982) neural maps (Bacao et al., 2005; Henriques et al., 2012). This involves 

training an artificial neural network, which consists of an input space containing individual 

observations and their attributes, and of an output space which is a grid of neurons. The 

cartographic coordinates and other variables are treated separately, training the neurons 

with geographical proximities before mapping the attribute patterns. By iteration, data is 

mapped into the output space, weighting the observations by their evolving proximity to 

each neuron, leading to a flat representation of the multidimensional topology of the input 

space. 

This method seems promising for big data analysis but until now it has been solved with 

rather low spatial resolution and the determination of the appropriate clusters depends 

critically in a posteriori treatments of data in the output space (Henriques et al., 2012; Feng 

et al., 2014). Moreover, neural network training is an opaque process, where is very 

difficult to recover the information produced at different stages, and the single layer output 

does not allow for interscalar analysis. 

A different approach relies on graph theory clustering (Calinski & Harabaz, 1974). It 

follows a connect-and-divide strategy, where a set of spatial units is first linked by a tree 

structure, building links that optimize a similarity criterion among units that satisfy spatial 

neighborhood constraints (Duque et al, 2012). Thus, an exhaustive structure is obtained, 

which is then subdivided into subgraphs, with an algorithm that minimizes attribute 
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heterogeneity while maximizing the number of groups that satisfy a general constraint, such 

as a minimum population in each cluster.  

This procedure offers interesting insights into the problem of efficiently linking spatially 

contiguous units while respecting homogeneity controls. Moreover, even if Duque et al 

(2012) rely on exogenous criteria for determining the optimal number of clusters, an 

endogenous determination of the best number of partitions seems feasible (Calinski & 

Harabaz, 1974). However, the graph approach has one fundamental limitation regarding 

scalar nonlinearities of spatial effects. In fact, as the subdivision order is unknown during 

the linking stage, all of the connections must be determined by close-range interactions, so 

relevant large-scale effects might be overlooked. 

A third method for spatial clustering, which is closer to our objectives, has been developed 

by Mu & Wang (2008). This algorithm aggregates spatial units to their most similar 

neighbors, creating a new layer of clusters, which is used as the substrate for a new round 

of aggregation and so forth, until all units are melted in one cluster. In this way, major steps 

of the process and its associated information can be preserved for further analysis.  

In Mu & Wang’s method, the similarity among adjacent units is defined by an attribute 

score produced by multidimensional factor analysis of several socioeconomic variables. 

This allows finding local minima, the units that most closely resemble their set of 

neighbors, and local maxima. Then, local minima are linked to their most similar neighbor, 

which is linked to its most similar one, and so on until a local maxima is reached (Mu & 

Wang, 2008). Thus spatially contiguous clusters are produced, while providing a 

multiscalar set of embedded clusters. Nevertheless, we consider that two important 

improvements can be done with a related algorithm design.  

Firstly, the strategy of linearly linking local minima and maxima seems inappropriate for 

geographical purposes, as it can induce clustering among dissimilar units. Conversely, a 

more flexible grouping procedure can be a better way to capture fractal frontiers between 

adjoining clusters. Secondly, defining similarity by an average score of factors, with fixed 

weights at different scales, risks overlooking relevant nonlinear distance effects and might 

be an inaccurate weighting schema at higher levels of aggregation. As opposed to the graph 

approach, this limitation can be solved with a related strategy. 

These issues and the proposed improvements will be detailed in the next section, which 

develops a novel algorithm for multiscalar spatial clustering.  

2.4. A local-hierarchical regionalization algorithm 
Building on Mu & Wang’s (2008) approach, we develop a simpler local-hierarchical 

regionalization algorithm with two relevant modifications: a more flexible neighbors’ 

definition and a recalculation of orthogonal scores at each scale. These adjustments will be 

explained within a brief general description of the clustering process (Figure 2).  

Starting at block level, a set of neighbors is defined for each unit     -   being the set of 

entities at any level -, generating a binary matrix that defines the aggregation constraint. 

Blocks are the smallest urban areas separated by streets and their perimeters are irregular 



 

13 

 

shapes, so it is unfeasible to use shared-borders procedures. Thus, we define as neighbors 

all the entities which have any pair of points of their perimeters under a distance threshold 

(Perruchet, 1983), which starts at 20 meters
3
. This distance reaches over standard GS streets 

but remains under the span of the smallest blocks, thus preventing to assign non-immediate 

neighbors. This threshold is proportionally increased towards higher scales, attaining a 

maximum span of 72 meters, reaching over the widest avenues, rivers and other 

topographical barriers. Thus, a realistic neighborhood constraint is implemented, as 

adjacency criteria evolves with scale. 

The attributes of each unit (Table 2) are normalized and processed by principal component 

analysis (PCA), obtaining a set of   partial scores (   ) for each entity  . These orthogonal 

vectors preserve information while controlling for multicollinearity, allowing for an 

optimal differentiation among units (Abdi & Williams, 2010; Cutter et al, 2003). The 

eigenvalue of each score   accounts for a proportion    of the total variance among units. 

As we have selected a set of positively correlated variables (Table 1), each unit can be 

characterized by an aggregated social distress score (    ) which is an eigenvalue-

weighted sum of partial scores:  

     ∑      

 

   

 

As opposed to Mu-Wang’s method, which uses a similar data treatment strategy but 

collapse three factors in a weighted average, we treat the scores independently for each pair 

of units. This allows capturing the local variations of different partial scores, because the 

vectors accounting for most overall variance can be homogeneous in small areas. In such a 

case, their scores will be mutually annulated and the corresponding units will be 

differentiated by differences in lower-ranked scores. 

Likewise, the dissimilarity among 2 neighbors   and   can be measured as a 

multidimensional distance of scores which can be calculated either as a sum of absolute 

(       ) or squared (       ) score differences (    is written as  , for simplicity): 

        ∑      (        )

 

   

                     ∑  (        )
 

 

   

 

Both difference definitions have been tested for the GS, and each produces a different 

aggregation behavior, as will be detailed in section 4.1. The multidimensional distances 

between a unit and each of its neighbors are averaged in order to obtain a local similarity 

index (    ), which allows ranking all units from the most locally similar to the most 

locally dissimilar: 

                                                           
3
 This flexible neighborhood definition functions in a similar way to the queen adjacency criterion, and allows 

working with discontinuous entities or imperfectly drawn shapefiles. Mu & Wang (2008) used census tracts, which 

are designed as a continuous lattice, and implemented a more constrained rook-neighbor definition.  
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This set of ‘seeds’ provides a baseline for the clustering algorithm to proceed (Figure 2). 

Each unit is given identification variables (     and     ), a grouping marker (  ), an 

arbitrary number of attribute variables and their corresponding score (    ). Attribute 

distances to each neighbor (                 ) and a local similarity index (    ) are 

computed at each round. In a round ‘n’ each unit becomes a ‘seed’ only once, giving 

priority to local minima. Each ‘seed’ selects the most similar neighbor among unmarked 

ones (    ), marks it (    ) and alters its secondary Id (    =       ). If the current 

‘seed’ has been previously grouped, it will transfer the Id of the first ‘seed’ in the cluster. If 

no unmarked neighbors are available, the ‘seed’ will adopt the Id of its most similar one, 

thus avoiding orphan units.  

Figure 2: Logical model of a local-hierarchical regionalization algorithm 

 

Source: authors. The main improvement over previous algorithms is the recalculating PCA 

step that assumes that magnitudes in multiple correlations are scale-dependent 

Performing as many iterations as there are spatial entities, each unit becomes a ‘seed’ only 

once, in an ordered way starting from the lowest mean score differences. This provides a 

flexible
4 

seeding criterion that gives priority to local minima and ensures that the results can 

be replicated
5
. Each ‘seed’ selects the most similar neighbor among unmarked ones (G=0), 

marks it (G=1) and alters its secondary Id (Id1n=Id1s). If the current ‘seed’ has been 

previously grouped, it will transfer the Id of the first ‘seed’ in the cluster. If no unmarked 

neighbors are available, the ‘seed’ will adopt the Id of its most similar neighbor 

(Id1s=Id1v). In such a way, no orphan units are left at the end of each round.  

                                                           
4
 An entity which has been previously marked by another can also be selected and the aggregation process does 

not necessarily follow a local minima-maxima direction. 
5
 As opposed to random seed selection. 
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Then, the base units are dissolved into clusters that share the same secondary Id, a new Id 

field is added to accommodate the grouping information for the next level and a new 

clustering round is started. Next, units are merged by secondary Id, attribute variables are 

combined as weighted averages
6
, a new set of PCA scores is computed at the following 

scale. In contrast to Mu-Wang’s method, this procedure is performed at each level, in order 

to account for the most relevant spatial interactions among variables at different scales. For 

example, crime rates’ spatial autocorrelation can be particularly strong at block level, but 

agglomeration economies can be sharper at a metropolitan span (Andresen & Linning, 

2012; Fujita & Thisse, 2013).  

This process iterates until all units are merged into one cluster. The information of the 

scores, averaged variables and the geometries of the units are preserved in tables and 

shapefiles after each round. The phylogeny of the clustering process is registered in a final 

table containing the original Id and the secondary Id of each level for all the original units. 

All this data can be used for subsequent data mining. We don’t know how the probability 

distribution of the different variables might affect the results, but this issue will be 

addressed in further research 

The updating of PCA scores at each aggregation round is a key improvement of the 

proposed algorithm, allowing capturing nonlinear and unpredictable effects of the spatial 

behavior of attributes at different scales. However, this procedure is computationally 

demanding and excludes the implementation of smoother step-by-step hierarchical 

clustering strategies more akin to Ward’s (1963) method. Even if this involves a rather 

coarse graining between successive scales of analysis, it is an adequate trade-off as we are 

more interested in studying spatial effects than in the refinement of grouping techniques. In 

the next chapters two case studies with applications of this algorithm are presented where 

the ability of the method to recover spatial information is put to test. 

  

                                                           
6
 By population, area, perimeter or any other appropriate parameter. 
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3. Case Study: Identifying the best level of analysis for social 

distress7 
 

In general, cluster analysis aims to classify large sets of observations into groups that are 

internally homogeneous while maximizing the differences among groups (Calinsky & 

Harabasz, 1974; Krzanowski & Lai, 1988). However, from this intuitive definition it is 

rather difficult to implement an objective stopping rule - understood as a definition of the 

optimal number of partitions - and a great variety of procedures have been proposed 

(Milligan & Cooper, 1985). 

3.1. Determination of an optimal scale or number of clusters 
Typically, in hierarchical clustering the average of any intra-group dispersion measure 

decreases as the number of groups increases (Tibshirani et al, 2001). Plotting this ratio 

usually leads to a curve with two different sections: a steep slope for small numbers of 

clusters and a rather flat descent for higher numbers (Salvador & Chan, 2004). The 

transition between slopes is called the ‘knee’, which is vaguely considered as an indicator 

of the best number of clusters (Thorndike, 1953), because a higher number of partitions 

would divide homogeneous clusters, while a lower number of divisions would join 

heterogeneous groups. However, this ‘knee’ is not always apparent and several methods 

aim to identify it, such as comparing differences, ratios or second derivatives of 

heterogeneity gains between successive aggregations, intersecting fitted lines or identifying 

distant points from fitted curves (Krzanowski & Lai, 1988; Milligan & Cooper, 1985; 

Salvador & Chan, 2004). Nevertheless, these methods are solely based in the internal 

homogeneity of the clusters, while other relevant parameters should be considered.  

In a broad Monte Carlo evaluation of 30 stopping rules, Milligan & Cooper (1985) 

identified a procedure developed by Calinsky & Harabasz (1974) as the best performer. 

These authors identify an optimal number of clusters through the highest value of the ratio 

[          ⁄ ]

[          ⁄ ]
⁄  

where   represents between groups heterogeneity,   is the total within groups 

heterogeneity,   is the number of partitions and   is the total number of items. Thus, this 

index searches a balance between a maximum of isolation among clusters and their 

minimum internal heterogeneity. Furthermore, Tibshirani et al (2001) show that, even for 

simulated data with no group structure, clustering processes are able to generate spurious 

groups. Thus, they develop a “gap statistic”, identifying the optimal number of partitions by 

the maximum reduction of the observed within group heterogeneity compared to its 

expected value with a null distribution (Tibshirani et al, 2001).  

                                                           
7 

This chapter was published in collaboration with Dr. Matias Garretón (Garreton & Sanchez, 2016)
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These issues have not been properly researched in the context of spatial clustering, although 

MAUP effects certainly have a strong impact on aggregation measures. A proper method to 

identify an optimal scale of regionalization should consider between and within group 

heterogeneity, while controlling for spurious correlations and aggregations. This question 

will be addressed in the fourth section of this article, after describing the regionalization 

algorithm and the dataset which will be used in the corresponding experiments.  

In particular, our main objective is to define the best level of analysis for hierarchical 

regionalization methods, comparing the aggregation behaviors of empirical and random 

datasets. In fact, the increase of correlation coefficients with scale which is observed in 

spatial clustering with random data is a spurious effect, which can be discounted from 

observations with empirical data in analogous settings. This allows singling out the best 

level of analysis, defined by a maximum of authentic spatial self-organization, leading to an 

accurate diagnostic of socially distressed zones in GS. Thus, a second goal of this work is 

to develop a cartographic and statistical description of the most critical areas in this city, at 

the most appropriate analytical scale. 

A case study that allows exploring these effects and the main question of determining the 

best level of analysis - in a real world setting - will be briefly outlined in the next section.  

3.2. Social distress indicators 
Combining 2012 Chilean Census data, available at person and household levels, six 

variables were calculated for each one of 47,414 blocks of GS. Three of these variables 

correspond to individuals’ characteristics and three to housing conditions (Table 2). By 

definition, all the variables take values between 0 and 1. In addition, local crime densities 

for 2012 were calculated from data of the Interior Ministry of Chile
8
, selecting four 

categories which concern urban violence (author et al, forthcoming). These variables were 

also normalized between 0 and 1. More attributes could be introduced, but an easily 

interpretable dataset will be used for this case.  

Income data and socioeconomic level indicators have not been included, in order to have 

independent diagnostic criteria to ascertain the spatial accuracy of the clustering method. In 

fact, the comparison of the following results with other segregation studies shows a 

remarkable geographic coincidence of the most critical areas, identified with different 

methods and datasets. 

 

 

 

 

 

                                                           
8
 In the context of a research agreement with the Centre for Territorial Intelligence of the Adolfo Ibañez 

University.  
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Table 2: Selected indicators for social diagnosis 

Variable Description Formula 

Unemployment Percentage of population willing to 

work but without employment 

Unemployed/ 

Employed or willing to work 

Dependence Percentage of inactive or unemployed 

population 

1- (Employed/Total population) 

 

Uneducated Inverse of education years for 

population older than 24 years 

Population >24/ 

Sum of education years (>24) 

Overcrowding Average number of rooms for each 

inhabitant, calculated at household 

level 

Mean (Rooms in residence/ 

Residents) 

Precariousness Percentage of shanty housing Precarious accommodations/ 

Total accommodations 

Insalubrity Percentage of housing without formal 

sanitation systems 

Insalubrious accommodations/ 

Total accommodations 

High violence Density of homicides, rapes and 

gravest injuries 

High violence reports/ 

Area 

Insurgence Density of weapons-related offenses 

and aggressions to officers 

Insurgence reports/ 

Area 

Drugs Density of drug-related crimes and 

offenses 

Drug-related reports/ 

Area 

Aggressions Density of offenses against the 

person 

Aggression reports/ 

Area 

Source: Authors’ elaboration with data from Census 2012 and the Interior Ministry of Chile. 
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The selected indicators have been constructed in order to assign higher values to the 

conditions which have negative social connotations (Table 2). This adjustment ensures that 

all of the variables are positively correlated with the attribute score at all clustering levels, 

allowing consistently differentiating and ranking the units by critical social conditions. This 

hierarchy is based on eigenvalue-weighted sums of PCA partial scores, a method that 

resolves the weighting problem which has been signaled by Cutter et al (2003) in a similar 

approach to diagnosing social vulnerability. In this GS’ case study, the scalar specific 

attribute score thus calculated will be interpreted as a ‘social distress score’ (SDS).  

This methodology has been applied to the identification of the best level of analysis, 

leading to an accurate diagnostic of socially critical areas in GS, as detailed in the following 

section.  

3.3. Choice of an optimal analysis level 
We will define an ‘optimal’ scale of multivariate spatial clustering as the level that 

represents the strongest coproduction of a set of attributes within and throughout the 

corresponding units. This is both related to evolving multicollinearity in the attribute set 

and to the consistency of the clustering process, which can be measured by intra-group 

compacity and inter-group isolation. Multicollinearity is quantified as the average of the 

absolute values of correlation coefficients
9
 among the 10 variables which have been used to 

elaborate the SDS. In order to avoid variance biases of different variables, a Fisher Z 

transformation of the coefficients was performed before computing the mean, which was 

back transformed to a correlation (Alexander, 1990). Intra-group heterogeneity - the inverse 

of compacity - is measured as the Within-group sum of Squared Differences (WSD) 

between each elementary
10

 unit’s SDS and the average SDS of the cluster. Inter-group 

isolation is measured as the Between-group sum of Squared Differences (BSD) between 

each cluster’s SDS and the average SDS of the clusters. SDS squared differences, 

calculated from partial PCA scores, have been chosen over other multivariate heterogeneity 

measures in order to control for multicollinear effects.  

Nevertheless, as MAUP scale effects influence the local-hierarchical clustering process, 

particularly by generating a spurious increase of correlation coefficients towards higher 

levels of aggregation (Figure 3), the aforementioned measures must be adequately 

controlled. Accordingly, 120 spatial Monte Carlo datasets with empirical distributions have 

been elaborated, shuffling the selected variables (Table 2) among blocks, thus generating 

independent random spatial patterns while preserving the statistical distribution of each 

attribute. These datasets were processed by the regionalization algorithm, using two 

attribute distance measures: absolute (     ) and squared (     ) differences of partial 

PCA scores (see section 3.1). For each measure, 60 runs of the regionalization algorithm 

were performed, allowing calculating two adjusted indicators of the clustering process:  

                                                           
9 Considering a total of 45 unique values for this case, excluding the diagonal (self-coefficients) of the correlation 
matrix. Absolute values are considered in order to avoid the annulation of positive and negative coefficients.  
10 Blocks, in this case.  
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First, an Adjusted Fischer Average of Correlation coefficients (AFAC): 

                    

Where      is the Empirical Fischer Average of Correlations, obtained from a single run 

of the regionalization algorithm with real data, and        is the Random Fischer Average 

of Correlations, calculated as the mean value of the 60 runs with shuffled data, for each set. 

Second, an Adjusted Heterogeneity Ratio (AHR): 

    
     

     ⁄

    
    ⁄

 

Where      and      are respectively the between group and within group sums of 

squared differences of SDS, obtained with real data, and      and      are the 

corresponding indicators averaged from the 60 random tests.  

Remarkably, considering only real data, the averaged coefficients regularly increase 

towards higher levels while the between-within ratios markedly decrease, but after 

controlling for random effects, both indicators reach maximum values at the same 

intermediate levels, for both dissimilarity definitions (Table 2). These indicators show that 

the optimal level of analysis for the selected variables in GS is roughly situated at a 

clustering level around 219 and 299 zones, depending on the dissimilarity measure. The 

regionalization algorithm used for this evaluation evolves at discrete scales, and a more 

precise definition could be obtained with single-step aggregation procedures. However, for 

a first approach these results will serve as a proof of principle for the proposed strategy to 

define an optimal scale of analysis.  

The first question that must be solved is the choice between the absolute and squared 

distance algorithms, as the first produces higher values of AHR while the second performs 

best in AFAC (Table 3). As our main concern is to cope with MAUP effects, which are 

directly associated with correlation measures, it is suitable to decide upon adjusted 

correlations. Moreover, these measures reflect real spatial interactions among observations, 

and can be unequivocally interpreted in terms of the set of selected variables (Table 2). On 

the contrary, AHR is a ratio of ratios, which in turn stem from a series of calculations over 

PCA orthogonal transformations. Thus, AHR is a highly sensitive parameter that may be 

strongly affected by any of the involved factors, and should not be used to compare one 

model to another. Hence, we have calculated the area contained by linear interpolation 

among observations of empirical and random series
11

, obtaining a value of 2.37 units of 

Fischer Averaged Correlation coefficients per logarithm of Units for the absolute distance 

algorithm versus 2.87 for the squared distances version (Figure 3), leading to choose the 

latter.  

 

                                                           
11 With a fitted curve or a continuous hierarchical algorithm this could be calculated as an integral difference, but 
in this case no simple formula had a satisfying fit to the real data series. 
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Table 3: Clustering indicators, empirical and random-adjusted 

Regionalization with absolute PCA partial scores differences 

Scale N° zones EFAC AFAC EBSD EWSD EBW rate AHR 

1 47414 0.204 0.201 953 0 
  

2 13332 0.222 0.200 503 291 1.728 0.395 

3 3540 0.267 0.241 288 505 0.571 0.504 

4 899 0.317 0.278 131 635 0.206 0.553 

5 219 0.418 0.345 68 712 0.095 0.656 

6 58 0.468 0.306 26 773 0.034 0.470 

7 17 0.555 0.241 13 827 0.016 0.325 

8 5 0.753 0.075 8 874 0.009 0.216 

9 1 (2) 1.000 0.000 0 953 
  

        
Regionalization with squared PCA partial scores differences 

Scale N° zones EFAC AFAC EBSD EWSD EBW rate AHR 

1 47414 0.204 0.201 953 0 
  

2 13773 0.225 0.204 521 289 1.804 0.347 

3 3827 0.270 0.245 238 493 0.482 0.370 

4 1062 0.358 0.321 119 608 0.196 0.448 

5 299 0.430 0.365 61 690 0.089 0.463 

6 84 0.491 0.363 31 766 0.040 0.401 

7 22 0.525 0.263 12 824 0.015 0.259 

8 6 0.876 0.310 8 874 0.009 0.198 

9 1 (2) 1.000 0.000 0 953 
  

Source: Authors’ calculations. Notes: Maximum values of the optimality indicators are underlined 

and in bold case. For correlation averages (EFAC and CFAC), the reported values at scale 9 

correspond to (2) zones, as displayed in the corresponding column.  
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Figure 3: Adjusted Fischer Averaged Correlations 

 

Source: authors. ABS and SQR respectively denote the results obtained with the regionalization 

algorithm using absolute and squared differences of attribute partial PCA scores. The FAC axis 

represents Fischer Averaged Correlation coefficients. Emp and Rand Cor respectively correspond to 

empirical values and the averages of 60 random data sets, Sd Rand Cor being the standard deviation 

of the latter. FAC log(Units) indicates the area contained by linear interpolation curves among 

observations of empirical and random series.  

 

The second question is to determine the optimal scale of analysis and the corresponding 

number of clusters for the selected method. In the case of the squared attribute distances 

algorithm and considering AFAC as primary criterion, two very similar levels can be 

identified, level 5 with 299 units and an adjusted coefficient of 0.365 and level 6 with 84 

and 0.363, respectively. However, AHR allows to clearly differentiating both levels, 

leading to select the fifth one (Table 3). At this stage, the high sensitivity of this double 

ratio is useful to differentiate among observations, while any systematic effects that may be 

produced by algorithm settings will similarly affect all the results of the same series.  

Regarding correlations and heterogeneity ratios, major differences are observed between 

empirical and random datasets. In the case of Fischer averaged coefficients, there are 

important correlations of real data even at block level but they are absent in the random 

datasets, indicating that the selected variables are actually coproduced in GS’ territory. 

These initial differences are first amplified by the regionalization process and then 

decrease, as the correlations converge to a theoretical maximum of 1, attained when only 

two units remain (Figure 3). Concerning the sums of squared differences of SDS, the 

structure of real data can be seen as a much lower between-units heterogeneity (BSD) at 

block level, compared with the random datasets, and a similar difference in internal 

heterogeneity (WSD) at the final stage of only one metropolitan aggregate (Figure 4).  
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Figure 4: Adjusted Correlations and Heterogeneity, SQR algorithm

 

Source: authors. All values correspond to regionalization with squared (SQR) differences of PCA 

partial scores. AFAC and AHR are Adjusted Fischer Averaged Correlations and Heterogeneity 

Ratios. WSD and BSD correspond to Within-group and Between-group sums of Squared 

Differences, differentiated for Empirical and Random datasets. As they represent total distances, the 

slope of BSD curves may be misleading, as they increase with higher numbers of units. However, 

when considering mean values, the distances between clusters actually increase at higher levels of 

aggregation.  

 

The fact that the highest scores of both measures single out the same optimal level
12

 - at 

least with the algorithm variants which have been tested here - highlights the close 

relationship between AFAC and AHR. In fact, as hierarchical regionalization algorithms 

simultaneously increase within-group homogeneity and between-group heterogeneity, an 

improvement in correlation consistency is expected, due to noise reduction inside the 

clusters and to a better differentiation among them (Mu & Wang, 2008:97). This opens a 

way to directly evaluate regionalization algorithms with real-world data, rather than with 

pre-designed or simulated spatial patterns. Furthermore, the results obtained so far support 

the argument to use AFAC and AHR both to rank different algorithms based on their 

performance with a specific set of data, and to single out the best level of analysis within 

the chosen model. Thus, hierarchical dendrograms should be cut at the level that maximizes 

AFAC while AHR should be used to differentiate among close ties. However, this 

conjecture is based on the comparison of two closely related algorithms and it should be 

thoroughly tested with a wider array of hierarchical regionalization methods, a task that will 

be performed in forthcoming research. 

                                                           
12 Other usual but rather informal optimal level indicators were tested with the same data, such as within-group 
heterogeneity ratios between successive levels and diverse variants of the elbow criterion, which also singled out 
level 5. However, the discussion of these results would be excessively lengthy without adding relevant insights to 
this argument.  
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Considering the above, yet in order to ascertain if the social diagnostic at the level that has 

been singled out by the highest AFAC and AHR indicators sustains the inference of its 

optimality, it is worthwhile to develop the following cartographic analysis.  

3.4. Socially critical zones in Greater Santiago at multiple scales 
Greater Santiago is the main urban system of Chile, having an approximate population of 6 

million inhabitants. It is a strongly segregated city, with high income disparities and severe 

urban inequalities, concerning health, education, transport, public spaces and service 

deficiencies in poor neighborhoods (De Mattos, 2002; Hidalgo, 2007; Sabatini & Brain, 

2008). Thus, the variables which have been selected for this study offer a relevant but 

restricted perspective. 

Remarkably, the relative contribution of the selected variables (Table 2) to the SDS shows 

important scalar variations (Figure 5). At small scales of aggregation, individual, housing 

and crime variables are almost equally correlated to the eigenvalue weighted PCA score. 

However, crime variables’ contribution sharply decreases at higher scales, which is 

consistent with research that shows small-scale spatial correlations for this kind of data 

(Andresen & Linning, 2012). Overall, housing variables exert the strongest influence over 

SDS scores, reflecting a relevant spatial specialization of GS’ housing market al all scales. 

These variations show the importance of recalculating PCA scores at several levels of 

aggregation, as multiple correlation patterns may change at different scales. 

 

Figure 5: Scalar variations of social distress score composition 

 

Source: authors. The FAC axis represents the Fischer Averaged Correlation coefficients, aggregated 

by variable type, between each of the selected variables (Table 2) and SDS at different scales. 
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Figure 6: Clustering levels of GS by social distress score

 

Source: authors’ analysis with Chile’s 2012 census data. 
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Figure 7: Optimal level (5) for social distress zoning in GS

 

Source: authors’ analysis with Chile’s 2012 census data. 
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The multiscalar cartography produced by our algorithm with the selected data is consistent 

with previous studies of GS’s socio-spatial divides, housing inequalities and urban violence 

(De Mattos, 2002; Hidalgo, 2007; author et al, forthcoming). In general, the characteristic 

segregation pattern of GS is more or less conspicuous in levels one to eight (Figure 6). The 

high-income quadrant, from downtown towards the north-east, is particularly clear in the 

third scale, as multiple clusters of low SDS represented in light gray., Darker areas towards 

the northern, western and southern peripheries are visible from the second to the fourth 

level, corresponding to poor and excluded areas, severed by a clearer radial pattern of 

middle class housing, developed around highways and main public transport corridors. At 

intermediate levels, the darkest areas reveal the combination of discriminatory housing 

policies and multiple phenomena, such as poverty concentration and urban violence. Level 

eight clearly reveals the sharp socio-spatial divide that reflects the severe income and life 

quality inequalities between high-income groups, a majority of the Chilean population and 

cast-out territories.  

The fifth scale of clustering, singled out as the optimal level of analysis (see section 4.1) is 

a rich source of information for the analysis of social distress in GS (Figures 6, 7). Critical 

zones are defined as those having a SDS above two standard deviations from the mean. 

From the 299 units at the fifth scale, thirteen clusters were thus selected, with a mean of 

9,002 inhabitants, slightly under the mean population of census districts
13

 in Chile. For the 

ten indicators used to build the SDS (Table 2), this subset has mean values which are 

significantly higher
14

 than the other units’ average, with insalubrity and precariousness 

rates which are over six times higher, while more than doubling overcrowded housing rates, 

high violence and insurgency densities. The detailed analysis of this data would be 

excessively long, but we will describe the most salient features of the critical units (Figure 

6).  

Sector ‘A’ is situated in the notorious settlement of ‘La Pincoya’, founded in 1969 from 

illegal land takeovers. This area presents the highest violent crime and the second drugs and 

insurgency densities, also having high rates of precarious and overcrowded housing. Zone 

‘B’ roughly corresponds to ‘Santa Ana’ neighborhood, which has the highest overcrowding 

rate, also being the territory where several members of a band that executed the greatest 

robbery in Chilean history have been arrested. Cluster ‘C’ is a small area in ‘Cerro 

Colorado’ neighborhood, having the highest precariousness, insalubrity and dependence 

rates, and the second worst education and employment levels. Zone ‘D’ partially matches 

the ‘Montijo-Resbalon’ areas, located in the southern banks of the ‘Mapocho’ river, which 

has received rural immigrants since the late XIX century in formerly illegal settlements that 

have been gradually urbanized since Allende’s government. This area shows the highest 

insurgency density, and very low levels of education and employment. Sector ‘E’ 

approximately contains the ‘Pudahuel-Norteamérica’ settlements, with a similar history to 

sector ‘D’, and presenting the highest unemployment ratio and interpersonal violence 

density. Zone ‘F’ corresponds to the ‘Araucania-Nogales’ settlements, closed at the west by 

                                                           
13

 This subdivision is immediately below municipalities, while containing census tracts and blocks. 
14

 T test with over 99% certainty for all the variables.  
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the ‘Central’ highway. This area corresponds to the first regularization of a land takeover in 

GS, where 90 families were assigned small parcels in 1947, and presenting nowadays the 

highest drug offenses density, and very high insalubrity and overcrowding ratios. Zone ‘G’ 

contains the ‘San Gregorio-Malaquías Concha’ settlement, the first extensive social 

housing developments in GS, built since 1959 in order to accommodate the earliest massive 

eradications in Chile, in rather precarious conditions. A half century later, this area still 

presents deficient housing conditions, while developing high levels of urban violence. 

Cluster ‘H’ corresponds to ‘La Bandera’ settlement, founded as a massive illegal takeover 

in 1969 and formalized by Allende’s government in 1971. This neighborhood presents the 

lowest education levels, severe dependence, precariousness and overcrowding rates, and 

high crime densities. Sector ‘I’ is a mixture of ‘Nueva Espejo’ settlements with industrial 

zones, where the spatial proximity of low-skilled jobs contrasts with low education levels, 

high unemployment and dependency rates, and adverse housing conditions. Sector ‘J’ 

partially matches the ‘Olivo’ and ‘Portada’ settlements, founded in the sixties around the 

satellite town of ‘San Bernardo’, expanded afterwards in order to accommodate families 

eradicated by Pinochet’s dictatorship. This area shows rather high levels for all of the 

selected indicators, with the exception of insalubrity rates.   

In sum, most of the highest SDS units correspond to well-known critical neighborhoods. A 

thorough discussion of their local identities and substantive characteristics is beyond the 

scope of this article, but the technical approach developed so far has been certainly useful 

to distinguish them in a metropolitan context. In these places, poor households have been 

concentrated by rural immigration, the first housing policies, forceful eradications during 

Pinochet’s dictatorship, or by more recent massive developments of social housing. 

Acknowledging the incompleteness of the selected indicators and having probably 

overlooked some relevant cases, this shows that critical social conditions are historically 

produced by urban policies and geo-economic trends, while being expressed as different 

and complex combinations of socio-spatial handicaps.  

It should be noted that GS’ case presents several historic peculiarities, mostly related to 

deregulation of urban development through neoliberal policies implemented in Pinochet’s 

dictatorship, which have intensified socioeconomic segregation processes. Thus, it is 

unclear if the kind of analysis which has been performed here would lead to similar results 

in other contexts. For example, the contrast of urban inequalities between GS and Greater 

Paris, which have very different historical and regulatory conditions, has shown remarkable 

similarities and sharp differences between both cities (Garreton, 2013). However, the 

aggregation behavior of similar sets of variables should present related properties in 

different contexts, so diagnostics based on AFAC and AHR or similar indicators could help 

to accurately identify common and particular characteristics in international comparisons.  

Finally, the results obtained so far demonstrate the usefulness of the proposed 

regionalization diagnostic strategy and its statistical robustness, suggesting new approaches 

to compare different contexts through differences on the scale and characteristics of their 

optimal analysis levels. To conclude, the main findings of this work and relevant lines for 

further research will be highlighted in the last section of this article.  
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3.5. Discussion  
 

In this work, we have underscored the theoretical and empirical relationships between 

MAUP and regionalization approaches, thus developing a strategy to cope with scale 

effects which allows determining the best level of analysis. With this objective, an 

improvement of existing hierarchical regionalization algorithms (Mu & Wang, 2008) has 

been implemented, recalculating PCA scores - which are used to calculate dissimilarity 

among units - at several steps of aggregation, thus capturing scalar variations of 

multicollinearity. Particularly, at higher scales a marked decrease of the influence of crime 

variables on spatial interactions has been observed in GS, which is consistent with previous 

research (Andresen & Linning, 2012). 

The main contribution of this research is to propose a strategy to determine the best 

hierarchical regionalization algorithm for a real dataset and then to select its optimal level 

of analysis (section 4.1). This is based on two adjusted indicators for the aggregation 

process, calculated with the results of one real and 60 spatial Monte Carlo generated 

datasets, allowing controlling for spurious MAUP effects. The best algorithm is considered 

to be the one producing a maximum aggregated AFAC, calculated as an integral difference 

between Fischer averaged correlations of real and shuffled data at every aggregation step, 

or by a suitable approximation. As a stopping rule to cut dendrograms, the optimal scale or 

number of clusters can be determined by the maximum AFAC as primary criterion, while 

close ties can be differentiated by AHR, which is a double ratio of between and within 

cluster heterogeneity of empirical and random datasets. Remarkably, both indicators single 

out the same levels for algorithms with two different dissimilarity definitions. These 

endogenous criteria for a stopping rule could contribute to focus hybrid regionalization 

methods (Guo & Wang, 2011), defining an optimal partitioning scale with results obtained 

at the preceding hierarchical structuration. 

A statistical and cartographic analysis of GS’ socially distressed areas at the optimal scale 

thus defined confirms the accuracy of this methodology, allowing identifying notorious 

neighborhoods with consistent identitary, historical and socioeconomic local handicaps. 

Some of these characteristics have been only briefly described, and the important question 

of what a cluster means in an urban setting has not been addressed yet. As recent research 

clearly shows, spatial clustering can provide rich frameworks to understand socio-spatial 

phenomena and to identify neighborhoods in more objective ways (Clark et al, 2015; 

Spielman & Logan, 2013). We believe that the proposed methodology opens interesting 

research perspectives on these subjects, clearly identifying aggregation scales that could 

lead to relevant substantive analysis of the places thus identified. For instance, the critical 

areas highlighted in this work can be useful for policy design and for further statistical and 

qualitative research.  

It should be noted that this work has compared two closely related regionalization methods 

and further research is needed - involving different cases and a wider array of algorithms 

and dissimilarity measures - in order to confirm the general performance of the proposed 
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stopping rule. Nevertheless, the results obtained so far support the proposed strategy to 

identify an optimal scale of analysis, which has solid foundations on MAUP and clustering 

theory, thus contributing to the theoretical and empirical understanding of the spatial self-

organization of interdependent real-world phenomena. 
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4. Case Study: Hierarchical Systems for Hedonic Appraisal15 
 

Generating hedonic pricing models in a mass real estate appraisal context is a highly 

complex task, since its performance in terms of predictive power must be comparable with 

human valuation which is the prevailing worldwide practice (Lenk et al, 1997). These 

systems aim to replicate the decision making process of hedonic prices, which is a balance 

between supply and demand of a given good (Rosen, 1974). These decisions involve a large 

number of variables, and since these processes take place in the mind of the traders, we 

don’t know its formal structure.  

Despite this, there is a great development of models that allow for approximations of this 

structure to be made with good levels of determination (for a full review of methods 

reviewing McCluskey et al 2013, Zurada et al, 2011). It has been observed that there is a 

high interdependence among housing attributes (Basu & Thibodeau, 1998), generating non-

linear behavior. Added to this, there is a high dynamism in the real estate markets, for 

example for the case of Santiago, Chile (Lozano, 2015; Parrado et al, 2009; Sagner, 2011). 

Because of this it is necessary to resort to intelligent methods that capture market behavior 

facing different scenarios. In trying to overcome these difficulties, the literature has seen a 

fertile development of work in recent years, in what has been called Computer-Assisted 

Mass Appraissal (CAMA) (McCluskey & Anand, 1999; Kilpatrick, 2011; Zurada et al, 

2011). 

The first econometric works on hedonic prices focused on understanding the determinants 

of housing prices, but the addition of more complex architectures has improved the 

predictive power of these models (see Tay & Ho, 1992). The development of hedonic 

pricing models has advanced greatly since Rosen (1974) who created the conceptual 

framework for estimating hedonic price based on linear regression analysis, which was 

proposed some years earlier by Ridker & Henning (1967). Hedonic pricing models, as 

proposed by Rosen, functionally relate the price of a property with its inherent attributes, 

such as floor area, land area or number of rooms; neighborhood attributes such as income 

or density; location or macro zone attributes; and attributes of regulation, as land use or 

construction in height permit. Since the availability of massive information and 

development of computing power, this topic has gained great interest in the community of 

expert systems, whom based on the design of intelligent systems have reduced the gap 

between human valuers and CAMA (McCluskey & Anand, 1999). 

Several variables have been used to calibrate hedonic models, but since the development of 

GIS and Big Data, increasing levels of data have been available in the form of indices and 

metrics that have importantly contributed to price prediction (Geoghegan et al, 1997). 

Sirmans et al (2005) review the most used attributes present in the literature. They showed 

that most variables correspond to intrinsic attributes of houses. Since Ridker & Henning 

(1967), it is known that the value of a home will not just depend on these attributes, but 

                                                           
15  This chapter was partially published, in collaboration with Dr. Marcelo Villena (Sanchez & Villena, 2016)
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also on a number of variables that have to do with the neighborhood, and accessibility, 

which contribute significantly to the predictions (Zurada et al, 2011). Basu & Thibodeau 

(1998) found evidence of spatial autocorrelation in housing prices, putting further evidence 

regarding the importance of the geographical dimension of hedonic estimates. With the 

development of GIS, the inclusion of diverse spatial variables has proliferated. Some 

examples of spatial variables used in the literature are: the ecological landscape 

(Geoghegan et al, 1997; Brasington & Hite, 2005), access to green areas, (Bastian et al, 

2002; Kong et al, 2007); air quality (Kim et al, 2003; Anselin & Le Gallo, 2006; Anselin & 

Lozano Gracia-2008); noise pollution (Cohen & Coughlin, 2008); access to education 

(Sedgley et al, 2008); etc. The availability of large databases is becoming increasingly 

common; hence the variables to consider are still under constant development, although all 

of them can be classified according to four categories of attributes defined by Rosen. 

The functional relationship between price and input variables is unknown since the 

valuation is a process that occurs in the mind of the traders. This relationship will depend 

on the perception of any given agent and therefore will vary from one to another. The 

search for an approach to this function has taken several ways. Ridker & Henning (1967) 

approached the valuation function with a linear relationship, while Palmquist (1984) 

incorporated nonlinearities through log-linear models that significantly improved the 

predictive power of models. Later Hornik et al (1989) proved that neural networks are 

universal approximators of nonlinear functions; since then its use spread to the hedonic 

models, which have been used with remarkable results (Tay & Ho, 1992; Do & Grudnitski, 

1992; Limsombunchai, 2004; Peteresnon & Flanagan, 2009). Given the subjective nature of 

the valuations, it is necessary to have systems that mimic the operation of the human mind 

as closely as possible. 

Many studies label artificial neural networks as black boxes as they do not provide a 

method for directly analyzing the effect of the input variables in the final prediction, in 

contrast to the econometric models (Ge et al, 2003; Limsombunchai, 2004). Several studies 

compare the predictive power of both approaches. Some of them claim that hedonic 

regressions models have greater accuracy (Worzala et al., 1995), but the vast majority leans 

toward the superiority of neural network models (Selim, 2009; Tay & Ho, 1992; Do & 

Grudnitski, 1992; Zurada et al 2011). Their results show that the method of artificial neural 

networks has an advantage in its ability to map the nonlinear relationship between variables 

(Nghiep & Cripps, 2001). Given this, researchers have used several network configurations 

for mass assessment of properties that are developed in parallel with the appearance of 

relevant variables for the prediction (Tay & Ho, 1992; Peteresnon & Flanagan, 2009; Ge et 

al, 2003; Wilson et al, 2002). Other techniques from artificial intelligence have been 

proposed for modeling hedonic price (Landajo et al, 2012; Kauko, 2003), but the one-

hidden-layer perceptrons are the most used in mass appraisal.  

The focus on the predictive power of valuation systems has also led to the construction of 

intelligent models that combine techniques from various methodological currents (Tay & 

Ho, 1992). Systems that combine forecasts have been tested in various fields, and there is 

evidence that even the simple average of forecasts in an expert system improves the 
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prediction (Diebold, 1988, Diebold & Lopez, 1995; Genre et al, 2013; Aiolfi, 2010; 

Kristjanpoller et al, 2014). Goonatilake & Khebbal (1995) define the types of hybrid 

intelligent system where the combination forecasting models can be classified as inter 

communicated systems. Such systems have been applied in hedonic price forecasts, 

obtaining better results than individual models (Quigley, 1995; Kilpatrick, 2011; 

McCluskey & Anand, 1999). Another kind of system as defined Goonatilake & Khebbal 

consists of polymorphic systems, which adapt their structure according to the object under 

analysis.  

Since Adam Smith that has been presumed that Homo economicus, is a rational agent who 

makes decisions based on complete information, so that maximizes their own benefit. This 

implies that all individuals in the population should behave the same way when the 

empirical evidence shows that in reality this does not happen. The economic agent actually 

has biases that make it behave irrationally when viewed from this perspective. The 

magnitude of this bias will influence the heuristics used by the agent in their decisions, 

which may differ between a submarket of the population to another. This is manifested in 

the form of the utility functions of each agent, which depend on the value that the agent 

assigns to each attribute. An interesting approach to this type of system is developed by 

Goodman & Thibodeau, 2004, where hierarchical clustering methods are applied to divide 

markets, significantly improving the prediction errors in the multiple regression models.  

Despite the abundance of works in computer-assisted mass appraisal, the potential of 

implementing hierarchical structures to more sophisticated models as neural networks 

models has not been explored, even though the evidence suggests that this generates better 

predictions. The purpose of this work is to fill this gap in the literature by studying the 

impact of incorporating complex architectures to other predictive models, such as: 

econometrics models, artificial neural networks and hybrid models of combined forecasts. 

4.1. Methods 
4.1.1. The hedonic model  

The origin of the hedonic price method goes back to the work of Hass (1922) and Court 

(1939), while its theoretical basis was then provided by Lancaster (1966) and Rosen (1974). 

From the work of Ridker & Henning (1967), hedonic pricing models have been widely 

used in understanding the determinants of prices and attribute valuation in real estate 

(comprehensive reviews can be found in the work of Follain & Jimenez, 1985; Sheppard, 

1999; Malpezzi, 2003; and Sirmans, Macpherson, & Zietz, 2005). 

The hedonic price method is derived from the theory of consumer behavior, where goods 

are valued based on the value added of its attributes, which vary among space. The price of 

a house  , can be expressed as 

   (       )         (1) 

Where   represents the inherent characteristics of the house,   are the neighborhood 

attributes,   are macrozone attributes,   regulatory attributes (Figueroa & Lever, 1992), 

and   is a stochastic error term with zero expected value. 
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4.1.2. The data  
Access to information is the main constraint to defining the variables to be used. In this 

study, mostly freely available public databases are used, plus some indexes developed by 

the Center for Territorial Intelligence of University Adolfo Ibáñez, as is detailed in Table 4. 

They are considered inherent variables such as surface and ground floor area; service 

accessibility variables, such as distance to schools, kindergartens, workplaces and subway 

stations; Socio-economic variables of each block, like density, average price per square 

meter, proportion of each income bracket, floating population; macrozone variables, in this 

case the municipality used, the unit that manages the regulatory plans; and environmental 

variables. Besides the housing variables, we included the year of the transaction, which will 

capture the temporal trend in prices. 

The dataset was built based in 65,239 housing transactions in Greater Santiago (Chile) 

between the years 2010 and 2013. The descriptive statistics of the database can be seen in 

Table 5. There are some variables with normal distribution as floor area or travel times, and 

others that are Pareto distribution, such as price, age or density. This means that there are 

many cases in one end of the distribution and very few cases at the other end, generating 

difference of orders of magnitude between the 3rd quartile and maximum values in these 

variables. 

A characteristic of complex systems is the interdependency, which implies that the 

variables are interrelated, which may violate the assumptions of some modeling 

approaches, especially linear ones. The relationship between variables can be seen in the 

correlation matrix presented in Figure 8. It can be inferred that there are variables with 

strong positive correlation, like between price and the proportion of high income, or 

between the distances between workplaces; and other variables with a strong negative 

correlation, like the floor area and distance work centers, or between the price of the 

property and the density of the block. Given the clear interdependence observed in the data, 

models that allow incorporating them into a functional form should have better predictive 

power. 
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Table 4: Definition of variables 

Variable name Description Source 

ANO Transaction year CBR 

UF_TRANS Transaction amount CBR 

SUP_CONSTR Lot Size (m2) SII 

SUP_TERR Floor area (m2) SII 

Con_patio Courtyard (1 = yes, 0 = no) SII 

Edad Age SII 

JARDIN_5M Kindergarten 5 min walking (1 = Yes, 0 = No) CIT 

JARDIN_10M Kindergarten to 10 min walking (1 = Yes, 0 = No) CIT 

JARDIN_15M Kindergarten to 15 min walking (1 = Yes, 0 = No) CIT 

COLE_10MIN College ranking top50 - 10 min walking (1 = Yes, 0 = No) CIT 

COLE_15MIN College ranking top50 - 15 min walking (1 = Yes, 0 = No) CIT 

COLE_LEJOS College ranking 50 to more than 20 minutes drive peak time (1 = yes) CIT 

SC_15MIN Sub center 15 min (1 = yes, 0 = no) CIT 

SC_TPRIV Private time to closest sub center CIT 

Ten_Metro Metro is 18 minutes walk (1 = Yes, 0 = No) CIT 

Ten_MetroC Metro is 10 minutes walk (1 = Yes, 0 = No) CIT 

TPR_CBD Private time to work center CBD peak hour CIT 

TPR_ElGolf Private time to work center El Golf peak hour CIT 

TPR_NvaLCo Private time to work center Nueva Las Condes peak hour CIT 

TPR_Provi Private time to work center Providence peak hour CIT 

ABC1_12P Proportion of very high income in that block (%) CENSO 

C2_12P Proportion of high income in that block (%) CENSO 

C3_12P Proportion of median income in that block (%) CENSO 

D_12P Proportion of low income in that block (%) CENSO 

E_12P Proportion of very low income in that block (%) CENSO 

Casas_UFPr Average price floor of that block SII 

DEN_MZ Population density; pre-census population per hectare per acre. CENSO 

GSE12_NUM Total inhabitants per acre CENSO 

POB_FLOT Block floating population CIT 

HA_MZ Block surface in hectares CIT 

IMORANCASA Local spatial autocorrelation lot price CIT 

COM_CAS Macrozone ranking of house prices CIT 

COM_CIT Macrozone ranking of properties prices CIT 

COM_PR_CIT $ / m2 average per commune CIT 

Z_UFM2_CAS Floor price quartile CIT 

Zona_MA Enviromental cluster based on surface temperature and greenery CIT 

ZonaMA_NEG Zona_MA cluster with negative index CIT 

ZonaMA_POS Zona_MA cluster with positive index CIT 

Por_veg_pr Percentage of vegetation per acre. CIT Landsat 8 

Pro_predio Average farm size per block CIT 

AV_15_MIN Green area at 15 min walking (1 = Yes, 0 = No) CIT 

Amp_tst Average amplitude of surface temperature between warm and cold month CIT Landsat 8 

Source: authors 

 



 

36 

 

Table 5: Descriptive statistics 

Variable name Min 1st Quartile Median Mean 3rd Quartile Max 

ANO 2010 2011 2011 2011 2012 2013 

UF_TRANS 357 885 1272 1838 2072 12000 

SUP_CONSTR 36 51 69 78,97 98 189 

SUP_TERR 62 112 149 175,2 207 600 

Con_patio 0 1 1 0,9832 1 1 

EDAD 0 4 14 20 29 324 

JARDIN_5M 0 0 0 0,4257 1 1 

JARDIN_10M 0 0 1 0,747 1 1 

JARDIN_15M 0 1 1 0,8578 1 1 

COLE_10MIN 0 0 0 0,01269 0 1 

COLE_15MIN 0 0 0 0,02905 0 1 

COLE_LEJOS 0 0 1 0,5163 1 1 

SC_15MIN 0 0 0 0,02276 0 1 

SC_TPRIV 0 616,7 923,3 1010,6 1256,2 4075,6 

Ten_Metro 0 0 0 0,1671 0 1 

Ten_MetroC 0 0 0 0,06084 0 1 

TPR_CBD 0 1829 2403 2521 3234 5502 

TPR_ElGolf 0 2382 3057 3064 4034 5464 

TPR_NvaLCo 0 2353 3135 3113 4119 5696 

TPR_Provi 0 2137 2822 2887 3721 5451 

ABC1_12P 0 0 0,01695 0,12593 0,14815 1 

C2_12P 0 0 0,1717 0,2159 0,3361 1 

C3_12P 0 0,06667 0,24419 0,27712 0,375 1 

D_12P 0 0,03571 0,24 0,3194 0,48649 1 

E_12P 0 0 0 0,06167 0,05714 1 

Casas_UFPr 0 13,32 16,9 18,68 20,95 66,83 

DEN_MZ 0 91,01 162,77 171,69 229,45 1305,97 

GSE12_NUM 0 1 2 2,093 3 4 

POB_FLOT 0 0 0 50,4 0 11469,9 

HA_MZ 0 0,4473 0,7605 5,7845 2,3135 407,9732 

IMORANCASA -0,401704 0,008412 0,075754 0,379027 0,295252 10,213109 

COM_PR_CIT 0 15,37 18,45 20,8 21,35 50,17 

COM_CIT 0 15 23 22,01 28 41 

COM_CAS 0 19 28 24,69 31 41 

Z_UFM2_CAS 0 1 2 2,061 2 4 

Zona_MA -1 -1 0 -0,3996 0 1 

ZonaMA_NEG 0 0 0 0,4728 1 1 

ZonaMA_POS 0 0 0 0,07321 0 1 

Pro_predio 0 120,1 168,6 480,7 287,1 58141,7 

Por_veg_pr 0 0 0 12,06 15,17 100 

AV_15_MIN 0 1 1 0,7878 1 1 

Amp_tst 0 20,58 22,18 21,68 23,26 31,17 

 

Source: authors 
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Figure 8: Correlation matrix 

 

Source: authors 

4.1.3. Multiple Regression Analysis 
Hedonic regression models are the most widespread in the housing appraisal literature. 

Taking advantage of the rich database of housing prices and their attributes, we built 11 

models of regression to represent equation (1). The first model is the most basic and 

considers only the surface of the house and its land area. 

For each additional model we added variables corresponding to an attribute type that can 

potentially affect the price of housing as seen in Table 6. Thus, to the basic model we add 

the dummy variable courtyard, then the age of the property and transaction. In model 4 we 

add the socioeconomic group, gse12_num. Later, location variables, including time and 

distance to Providencia (Business district) and to the nearest metro station was added. 
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Finally, variables that account for vegetation, distance to schools, the ranking of location-

based rates, density and surface of blocks, and the surface temperature are added. The tenth 

model considers all available attributes and all the statistically significant variables found. 

This approach resembles the one of Hendry (1995), going from the general to the specific. 

The results of all econometric models are presented in Table 6. In particular, we see that all 

the variables considered are statistically significant at 1%. Similarly, it is clear that each set 

of attributes improved the adjusted   , in fact between the first base model and the tenth, 

the overall predictive power of the regression is improved by more than 18pp. 

The purpose of these preliminary regressions reported in Table 6 is to define the 

specifications to be used in the various models to be tested in this study. These were 

calculated on the entire database, without separate training and test set, and without 

segmentation. 

As a control method an eleventh model that considers all the variables of the database is 

generated. 

Table 6: Preliminary regressions

 

Source: authors 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

VARIABLES uf_trans uf_trans uf_trans uf_trans uf_trans uf_trans uf_trans uf_trans uf_trans uf_trans

sup_terr 7.401*** 7.099*** 7.837*** 6.438*** 6.139*** 5.810*** 5.819*** 5.554*** 5.318*** 4.975***

(0.102) (0.104) (0.108) (0.0955) (0.0921) (0.0905) (0.0899) (0.0871) (0.0928) (0.0925)

sup_constr 17.12*** 18.02*** 17.79*** 14.94*** 12.70*** 12.08*** 11.78*** 12.02*** 11.86*** 11.10***

(0.240) (0.250) (0.245) (0.216) (0.213) (0.206) (0.204) (0.195) (0.195) (0.195)

conpatio 742.4*** 631.4*** 470.0*** 458.0*** 392.5*** 376.5*** 298.9*** 293.3*** 296.5***

(29.11) (29.85) (27.05) (25.50) (24.66) (24.63) (24.74) (24.49) (23.83)

edad -10.98*** -10.80*** -14.82*** -11.46*** -11.82*** -9.938*** -8.934*** -10.09***

(0.293) (0.269) (0.289) (0.291) (0.292) (0.288) (0.295) (0.297)

year 72.22*** 76.57*** 60.35*** 77.72*** 84.10*** 88.68*** 84.21*** 91.98***

(4.659) (4.292) (4.194) (4.113) (4.072) (3.958) (3.951) (3.923)

gse12_num 463.0*** 471.4*** 415.2*** 388.0*** 284.4*** 275.1*** 230.6***

(5.093) (4.964) (4.796) (4.815) (4.633) (4.576) (4.583)

tpr_provi -0.285*** -0.284*** -0.252*** -0.288*** -0.282*** -0.338***

(0.00488) (0.00487) (0.00489) (0.00482) (0.00482) (0.00536)

ten_metro -182.2*** -110.7*** -137.6*** -168.0*** -159.8*** -149.5***

(12.97) (12.63) (12.53) (12.20) (12.17) (12.01)

zona_ma 683.7*** 680.7*** 570.4*** 584.5*** 306.4***

(27.50) (27.18) (26.62) (26.77) (27.83)

zonama_neg 454.4*** 471.0*** 426.6*** 459.1*** 295.3***

(30.19) (29.82) (29.01) (29.22) (29.37)

av_15_min -369.8*** -362.3*** -412.3*** -341.0*** -341.0***

(9.820) (9.688) (9.445) (9.382) (9.414)

cole_15min 1,024*** 810.2*** 820.3*** 708.0***

(44.53) (44.61) (44.85) (44.92)

com_cas 29.19*** 30.90*** 26.82***

(0.424) (0.434) (0.422)

ha_mz 6.078*** 6.804***

(0.421) (0.483)

den_mz -0.113** -0.147***

(0.0450) (0.0458)

amp_tst -100.4***

(3.094)

Constant -810.2*** -1,558*** -146,598*** -155,695*** -121,913*** -156,317*** -169,177*** -178,684*** -169,774*** -182,767***

(15.61) (34.77) (9,373) (8,636) (8,438) (8,274) (8,192) (7,964) (7,950) (7,883)

Observations 63,054 63,054 63,054 63,054 63,054 63,054 63,054 63,054 63,054 63,054

R-squared 0.494 0.497 0.512 0.586 0.607 0.630 0.640 0.664 0.668 0.678

Robust	standard	errors	in	parentheses

***	p<0.01,	**	p<0.05,	*	p<0.1
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4.1.4. Artificial Neural Networks 
Artificial neural networks are models inspired in the performance of biological neurons, but 

ultimately they are mathematical models that can provide a functional relationship between 

input variables and an output variable, as shown in Figure 9. Hornik (1989) shows that 

neural networks with one hidden layer with sigmoidal transformation function are universal 

approximators of any non-linear function, so its use in hedonic price modeling has been 

extended since. Multilayer perceptrons with one hidden layer have a function for equation 

(1) of the form  

    (   ∑        (    ∑           ))       (2) 

Where   corresponds to the transformation function, in this case sigmoid,   is the number 

of neurons in the hidden layer, and   is the number of variables in the input layer. The 

optimal number of neurons in the hidden layer is an open issue, but Blum (1992) suggests 

that this number must be between the size of the input and output layers, so the midpoint is 

taken, i.e. (   )  ⁄ . With regard to the input variables 11 sets will be tested, 

corresponding to the specifications of the 11 different linear regression models. To train the 

neural networks the input variables must be normalized between -1 and 1, and outputs 

between 0 and 1, but this linear transformation does not affect the variables probability 

distribution.  

Figure 9: Artificial Neural Network Architecture 

 

Source: authors 
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4.1.5. Combining forecasts 
The combination of forecasts is widespread in housing appraisal systems (Quigley, 1995; 

McCluskey & Anand, 1999), where expert systems combine the results of different base 

models to make a final prediction. Three methods of combining forecasts are tested: Simple 

average, regression weighted average and neural weighted average. To remove noise from 

poorly performing models, forecast combinations only consider the 6 models with lower 

training-sample MAPE (mean absolute percentage error). 

 

4.1.6. Hierarchical architectures 
The spatial disaggregation of markets can significantly improve the predictive power of the 

models of hedonic regression (Goodman & Thibodeau, 2003). Using different algorithms 

allowed them to model the boundaries between the various markets rather than arbitrarily 

defining them. These boundaries can be physical or abstract depending on the approach 

(regionalization or clustering). The purpose of segmenting markets not only has to do with 

improving the accuracy of the models, but with improving interpretability, so a 

regionalization algorithm was used to create contiguous spatial units. 

Assembling spatial units into meaningful groups is a difficult task because they must deal 

with high computational complexity while controlling the modifiable area unit problem 

(MAUP), spatial autocorrelation and multicollinearity attributes. Garretón & Sánchez 

(2016) shows that the magnitude of these problems varies among the scale at which it is 

analyzed, so their proposed method is used to incorporate emerging effects of interaction 

between variables. This creates a hierarchical structure of spatially contiguous regions, 

based on 55.000 blocks of the Great Santiago, as seen in Figure 10. 

As Goodman & Thibodeau, a sub market is defined if it has at least 200 housing 

transactions. Starting at block level, if that block has less than 200 transactions, then the 

submarket is defined in the upper levels, going up the hierarchical tree until an upper region 

meets the restriction of 200 transactions. The sub model associated with this submarket is 

used for valuations of properties of that block. Those properties that were part of more than 

one sub-market, are valued with the most specific submarket available. A total of 322 

submarkets were generated as can be seen in Figure 11, and therefore the hedonic price 

model for the submarket   is 

    (        ) 

To make a full comparison, the analysis of Goodman & Thibodeau will be extended by 

considering other forms of the function  (        ), besides the linear form. Models that 

have proven to have better predictive power, such as neural networks and combined 

forecast systems will also be tested. Finally, hybrid models and individual models with and 

without market segmentation will be compared to see the impact of segmentation in 

different predictive performance. 
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Figure 10: Hierarchical dendrogram 

 

Source: authors. The lower lever correspond to each block in Great Santiago 

 

Figure 11: Submarket map of Great Santiago. 

 

Source: authors 
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4.1.7. Sensitivity 
Estimating of the relationship between a dependent variable and its predictors is a central 

problem in empirical research. The statistical methods such as correlation analysis and 

linear regression analysis are widely used in various disciplines in order to answer this 

question, as in medicine, social sciences, earth sciences, etc. Other disciplines, such as 

engineering in all its forms, have generated simulation methods to evaluate more complex 

systems, which unlike statistical models, not necessarily consist of differentiable functions. 

Having methods to address this problem can answer many questions in the most diverse 

fields, so the development of these tools is an issue that remains an active area of research 

(Xingli & Olden 2015, Fischer 2015).  

Using partial derivatives of the prediction with respect to input variables has been used for 

both linear and neuronal models to understand their elasticity (Deif, 2012; Davis, 1989). 

The first attempt on neural networks was conducted by Davis 1989, who using a bootstrap 

approach analyzes the behavior of derivatives under disturbances of the input variables. 

Another interesting work is developed by Dimopoulos (Dimopoulos et al 1995, 

Dimopoulos et al 1999), who generates various sensitivity metric from the partial derivative 

function obtained for each variable, allowing to analyze the model directly after the training 

the neural network. Other works where partial derivatives are applied are Intrator & Intrator 

(2001), Reyjol et al., 2001, and recently (Gevrey & Dimopoulos 2015) who estimates the 

cross derivatives between two predictors to know their interdependence. 

There have been other approaches to understand the sensitivity of the networks, in addition 

to partial derivatives. Olden et al 2004 make a thorough review, reporting methods that 

heuristically analyze the sensitivity of the networks (Lek et al., 1996; Scardi., 1996; 

Recknagel et al, 1997), or visually, with interpretive diagrams (Özesmi & Özesmi, 1999), 

but most of these studies are limited to developing a ranking of importance of the variables, 

without giving further information on the sign of the interaction or statistical significance of 

sensitivity metrics. 

4.1.8. Multilayer perceptron partial derivative 
Several authors even refers to training artificial neural networks as regressions (Intrator & 

Intrator 2001, Specht). Artificial neural networks, like regression models, functionally link 

a dependent variable with independent variables.  This is often a differentiable function, 

especially considering the network with one hidden layer and sigmoid activation function, 

which is the most widely used network architecture in several fields (Chen & Ware, 1999; 

Nghiep & Al, 2001), and has the property of being a universal approximator of nonlinear 

functions (Hornik et al, 1989). Due to the functional nature of artificial neural networks, all 

statistics techniques are implementable in order to understand its sensitivity (Cheng & 

Titterington, 1994). 

The multilayer perceptron which is used has one hidden layer, and sigmoid activation 

function, as shown in Figure 9. This architecture has the output function 

 (  )   (   ∑        (    ∑           ))        
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Where   corresponds to the transformation function, in this case sigmoid,   is the number 

of neurons in the hidden layer, and   is the number of variables in the input layer. The 

optimal number of neurons in the hidden layer is an open issue, but Blum (1992) suggests 

that this number must be between the size of the input and output layers, so the midpoint is 

taken, i.e. (   )  ⁄  (Sánchez & Villena, 2015). The gradient vector of   with respect to 

   is    [         ]
 (Dimopuoulos et al 1995), and 

      ∑       (     )   
 
                   

Where    is the derivative of the output layer with respect to its input,     is the output of 

hidden node   for the input   , and scalars     y    are the weights between the input   and 

hidden neuron  , and between hidden neuron   and the output. 

Instead of directly consider the partial derivative, elasticity is calculated, which has the 

same units for all variables, generating indicators that are directly comparable across 

variables. Elasticity is calculated as 

     
   

 (  )̂
                

Since the objective is to find a method comparable to other models, the expected value of 

the elasticity of each variable will be obtained, and its respective standard deviation. The 

     index (Dimopoulos et al 1999) is additionally generated, which is calculated as the 

sum of the square of the derivative of the variable  . 

4.2. Results 
To generate the results in each submarket, 80% of the data available was taken for training 

and 20% for testing. This data was used to train the 25 models described earlier in each 

submarket. 50 partitions were made randomly, and the testing-set MAPE was measured in 

each simulation as a directly interpretable measure of error that is comparable between all 

methods.  

4.2.1. Predictive power 
The distribution of the errors between samples can be seen in Figure 12. As can be seen, 

segmenting markets improves the predictive power of all models, whether regression 

models, neural networks or combination of forecasts, although the greatest reduction in 

MAPE occurs in the regression models. This is because the neural network models and 

combined forecasts already incorporate nonlinear effects in their training, so the added 

value of market segmentation is lower compared to simpler models. It can also be seen that 

demand segmentation helps reducing the variability of predictions, moving in a much more 

limited range than the general models. 

The general models validate the performance of neural networks, these being superior to all 

regression models, as several authors have suggested, and the same with systems combined 

forecast, exceeding the performance of other basic models. Interestingly, this behavior is 

reversed for segmented models, where in many cases regression models outperform neural 

networks and hybrid models. This is related to the phenomenon mentioned above, the 
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segmentation itself incorporates effects of spatial autocorrelation and multicollinearity 

attributes, so the simplest models improve performance without modifying the valuation 

function. It also happens because the market segmentation reduces the variance of 

territorial variables, so models with large number of these variables are exposed to 

overtraining given the high number of parameters and the low number of significant 

variables. This can be corroborated seeing that simple neural networks and hybrid models, 

have less error than more complex models. This result is very sensitive to the architecture 

of the system, so to validate this fact is necessary to sensitize this method to different 

submarkets thresholds and for different neural networks configurations. 

Another interesting result is that the hybrid model which makes the simple average of the 

other predictions is the best performer, in both scenarios, which is previously pointed out in 

the literature (Genre et al, 2013), indicating that not always the more complex model will 

make the best forecast. 
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Figure 12: Distribution of MAPE over all runs 

 

Source: authors 
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These results are robust, but they aggregate all the valuations performed by a model in each 

one of the 50 iterations, and this hides information about how the MAPE is distributed 

within each simulation. Added to this, the high level of error, almost always above 30%, 

requires a thinner analysis in order to build a reliable system of mass appraisal, and 

therefore solving the original problem. The errors obtained by the best of the 50 simulations 

are shown in Figure 13, and can be seen that when opening the MAPE by transaction, the 

dispersion increases dramatically. All models have at least 25% of valuations with MAPE 

under 9%, improving this indicator as the model increases in complexity. However, they 

have another 25% of valuations by over 40%, with differences depending on the area where 

the valuations are done. 

Figure 13: Distribution of MAPE in a single run 

 

 Source: authors. The red percentage represents the 1
st
 quartile of MAPE in this single run, meaning 

that a 25% of the observations have that MAPE or less 

Anyway a high percentage of assessments that falls within acceptable ranges. By selecting 

model with the lowest MAPE in each submarket, we can see that all models have some 

share, and this proportion of cases where a model is the top performer can be seen in Table 

7. In no case the best performance exceeds a MAPE of 9%, and the linear models that are 

best performers have the lowest errors. Note that the overall MAPE of the system, with 

each sub-market appraised with the best performance model, is of 5%, which is 
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significantly lower than the results shown in Figure 10, which consider only a single model 

for all transactions. 

Table 7: Best performer distribution 

Model MAPE Relative Freq 

MRA 1 6% 1,71% 

MRA 2 5% 1,41% 

MRA 3 4% 2,13% 

MRA 4 4% 1,57% 

MRA 5 3% 1,50% 

MRA 6 2% 1,38% 

MRA 7 2% 0,16% 

MRA 8 3% 0,49% 

MRA 9 3% 1,45% 

MRA 10 4% 1,81% 

MRA 11 6% 4,28% 

ANN 1 5% 2,54% 

ANN 2 5% 2,96% 

ANN 3 5% 3,20% 

ANN 4 5% 3,31% 

ANN 5 6% 3,70% 

ANN 6 7% 4,22% 

ANN 7 6% 4,23% 

ANN 8 6% 4,72% 

ANN 9 7% 5,30% 

ANN 10 7% 5,94% 

ANN 11 2% 13,76% 

F Comb 1 6% 9,80% 

F Comb 2 9% 14,79% 

F Comb 3 1% 3,63% 

Total general 5% 100,00% 

Source: authors 
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If we see the spatial distribution of errors in Figure 14, it is seen that there are some clusters 

with high predictive power, and some areas in red, where all the efforts of improving the 

predictive power of the system should be focused. 

Figure 14: Spatial distribution of the best MAPE 

 

Source: authors  
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4.2.2. Sensitivity 
With respect to sensitivity, local partial derivative for each best model was calculated with 

respect to its input variables. The SSD indicator is then measured, and the variable that 

means the greatest impact on the prediction of the model is recorded. The results of the 

sensitivity can be seen in Table 8, which says that the variables representing density of the 

block, surface of the block, and surface area of the property have the highest elasticity. 

These variables are interrelated, as they represent the quality of life that can be achieved in 

that location. The following variables have to do with green areas (the surface temperature 

is a proxy of it), and then the municipality where the property is located. It is noteworthy 

that large part of the variables appears as the most relevant, depending on the geographical 

location, which indicates that the spatial disaggregation of the analysis gives very relevant 

information for decision-making around the property market. 

 

Table 8: Sensitivity distribution 

Variable Relative Freq 

DEN_MZ 10,20% 

HA_MZ 9,10% 

SUP_TERR 8,30% 

Amp_tst 8,20% 

COM_CAS 8,10% 

conpatio 7,00% 

AV_15_MIN 6,40% 

COLE_15MIN 6,10% 

ANO 5,80% 

EDAD 5,70% 

TPR_Provi 5,30% 

ZonaMA_NEG 5,20% 

GSE12_NUM 5,20% 

Ten_Metro 5,00% 

Zona_MA 4,20% 

 

Source: authors  
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4.3. Discussion  
This study extends the knowledge about the application of hedonic models in segmented 

markets. We show that housing forecasts improves for all models when done at a 

submarket level. This might occur due to what authors as Kahneman & Tversky (1978) 

called bounded rationality, which implies that the decision-making differs between subjects 

from different contexts. In this context, sub-markets models should be better to capture the 

behavior of individuals, which holds for all models.  

Results confirm that neural network models exceed the predictive capability of the 

regression models when applied in a general framework; however, this situation changes 

when hierarchical clustering methods are used, allowing simpler models as regression 

analysis to outperform them. These results have several implications, since it allows to 

build high accuracy predictive systems that can be analyzed like any other econometric 

model. This happens given the black box nature of artificial neural networks and hybrid 

models, which do not provide information on the impact of each variable in the prediction. 

This finding gives a new edge to the debate on the use of regression or neural networks for 

house appraisal. The major argument in favor of neural networks is their power of 

generalization and its ability to incorporate nonlinear behavior, but in this case study we 

show that when market segmentation incorporates these phenomena then the added value of 

neural networks is much lower. 

What can be inferred from this is that there is not a right model, all of them have limitations 

and assumptions, and the choice of the right method will depend on the context in which it 

is sought to be implemented. Given these limitations, the idea of combining techniques 

from different methodological currents to create systems that have better predictive power 

has gained ground. It is noteworthy that the simple average is the one with the best 

performance, both in the segmented model, as in the general model, as Genre et al (2013) 

anticipated. This is explained as the different models that are combined are determined 

independently, so it is assumed that there is no relation between residues of the different 

models, and there should not be a functional relationship between their forecasts. 

This work shows strong evidence of the impact of market segmentation on different 

predictive systems, but this was tested with a limited number of models, and therefore 

results may vary if other methods are considered. Another factor to consider is that the 

segmentation method used considers nonlinear phenomena and spatial autocorrelation, and 

thus helps reduce the complexity of the problem, but this is not true for all segmentation 

methods.  

The results confirm that the partial derivative method provides reliable information, 

allowing doing more complex analysis than other heuristics that only generate variable 

rankings without providing information on local elasticity (Olden et al 2004). This has 

several implications since having the partial derivative function allows gaining more 

insights into the system’ behavior by analyzing for example, the elasticity in different 

ranges of the predictor variable 
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It is noteworthy that artificial neural networks, despite having better predictive power, are 

very sensitive to its architecture, and therefore the results may differ under different 

network configurations, which is a challenge to be addressed in future research. In addition 

there are other scenarios where regressions outperform artificial neural networks (Sanchez 

& Villena, 2015), so these different models are complementary tools that should support 

the decision making processes altogether. 

This work opens the way for the development of hybrid systems of computer-assisted mass 

appraisal, because it combines approaches that had been developing separately, market 

segmentation, and building systems of forecasts combination. Care must be taken as it was 

shown that increasing the structural complexity of the systems will not necessarily improve 

the predictive power, so it is key to carefully design the architecture of intelligent systems. 

Creating segmented models allows us to understand the dynamic of local market, which 

allows industry players to design more specific strategies, and therefore is a tool that adds 

real value to current solutions. 
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5. Conclusion  
 

Diversity is an inherent part of nature, so to study such a complex phenomenon as the Self-

organization of space, one must begin by recognizing this diversity and deal with it within 

the proposed analysis methods, and must be tackled with tools with multidisciplinary 

approach. 

In this work, it has been presented a spatial clustering algorithm which is able to identify 

relevant geographic patterns without external intervention, other than selecting the initial 

dataset. The fundamental novelty of this method is its capacity to exploit spatial 

interactions as useful sources of information about self-organizing topological phenomena, 

rather than considering them as spurious effects. In particular, the reevaluation of 

multicollinearity through recalculation of PCA scores at different scales allows capturing 

the similarities induced by spatial correlations at attribute-specific extents.  

Nevertheless, two key improvements can be conceived for this algorithm. Firstly, develop a 

computationally efficient strategy for smoothing the aggregation process, making it more 

similar to pairwise matching schemas such as Ward’s (1963) method. Secondly, introduce 

endogenous controls to generate more uniformly-sized units at any scale of the process, in 

order to improve the accuracy of the scale-specific weighting method and the usefulness of 

the clusters for practical purposes.  

Its application to social distress analysis in GS shows a remarkable capacity to identify 

notorious neighborhoods, in agreement with the identitary, historical and socioeconomic 

context of the highlighted areas. The areas thus identified can be useful for policy design 

and for further statistical and qualitative research.  

In any case, the results obtained so far consistently show the existence of mathematical 

connections among correlation matrices and statistical dispersion in the observed 

multiscalar data aggregations. Remarkably, this leads to a consistent identification of the 

best level of analysis through the ‘elbow’ criterion, SS ratios, mean correlation differences 

between real and random datasets and RR compacity-isolation ratios. As all these measures 

are based on different relationships between individual and mean values, further research 

should clarify the arithmetical principles of this convergence.  

And above all, the different behaviors of aggregation between real and random datasets 

clearly show that the emerging patterns in spatial clustering are partially a spurious MAUP 

effect, yet they reveal a dominant influence of the real coproduction of socio-spatial 

phenomena. Herein, we have developed a methodology which opens concrete ways to 

systematically analyze these interactions. 

The generation of tools to understand this phenomenon, which is present in most societies, 

allow you to have greater knowledge of the impact of different policies on the evolution of 

a city, which will define the optimal policies that improve our welfare. The development of 

similar models that overcome the limitations of hierarchical clustering represent a natural 
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extension of this work, as well as finding new cases of application of this method in the 

design of our cities.  

In sum, we are providing useful tools that will contribute to a more rigorous exploration of 

the black box of spatial interdependence and multiscalar self-organizing phenomena, while 

linking these questions to relevant real world issues.  
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